Correlation Controlled Adaptive Filtering for Fmri Data Analysis

نویسنده

  • J. Rydell
چکیده

In analysis of fMRI data, it is common to average neighboring voxels in order to obtain robust estimates of the correlations between voxel timeseries and the model of the signal expected to be present in activated regions. This paper presents a novel method for analysis of fMRI data, which extends this approach by averaging only neighboring voxels whose time-series have similar correlation coefficients. A comparison between the new method and two other filtering strategies is also presented, and the novel method is shown to have superior ability to discriminate between active and inactive voxels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal

Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...

متن کامل

Adaptive analysis of fMRI data.

This article introduces novel and fundamental improvements of fMRI data analysis. Central is a technique termed constrained canonical correlation analysis, which can be viewed as a natural extension and generalization of the popular general linear model method. The concept of spatial basis filters is presented and shown to be a very successful way of adaptively filtering the fMRI data. A genera...

متن کامل

Adaptive Spatial Filtering of fMRI Data

Functional magnetic resonance imaging (fMRI) is a method for detecting brain regions that are activated when a certain task is carried out. The method is useful in planning of neurosurgical procedures, where knowledge of the exact locations of important functions is needed to avoid damage to these regions. It is also an important tool in neurological research, where it is used to investigate th...

متن کامل

Adaptive Seeding for Resting-State Network Correlation Analysis with Empirical Mode Decomposition

Introduction The temporal correlations in low-frequency resting-state BOLD signal suggest functional brain networks that are not related to a specific task [1]. The widely-used seed voxel correlation analysis reveals functional connectivity strength with respect to a particular seed region-of-interest (ROI). Thus it requires priori assumptions, and the result is strongly susceptible to this ROI...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005